Development and Validation of a Predictive Model to Assess the Impact of Coastal Zone Emissions on Urban Scale Air Quality

Alan W. Gertler
Research Professor
Desert Research Institute
Reno, NV



- Background
  - Rationale and goal of SERDP study
  - □ Local and regional impact
- Limitations of current models
  - Land-sea interface
- Model Components
  - □ MM5
  - □ LAP Model
  - Chemistry Model
  - Linkage Model
- Model Validation
- Application
- Summary



#### M

#### Why did we perform this study?

- Study was funded by SERDP.
- DoD operations are sources of atmospheric pollutants and their precursors.
- Many DoD operations are located adjacent to areas that suffer from elevated levels of urban and regional scale air pollution.
- What is the impact of DoD emissions on urban scale air pollution?
- How can we reduce the DoD impact with minimal effect on DoD's mission?



#### **Overall Goal**

Provide a tool that can be used to develop and implement effective strategies to reduce the impact of coastal operations on urban scale air quality.



#### Importance of Ship Emissions

- Significant source of SO<sub>2</sub>, NO<sub>x</sub>, and PM
- Local and regional impact



Contributions of the Pacific Coast area to the ammonium sulfate (ug/m³) in the Class I areas of the western United States based on trajectory regression

Xu et al. (2006), *Atmos. Environ*., submitted.

#### 10

### Limitations of Current Model Capabilities

#### Meteorology

- Difficult to faithfully simulate the meteorology at the air-sea and land-sea interfaces.
- Improved forecast models and advection/dispersion models have been developed.

#### Air Quality

- Difficulty in determining the specific impact of emissions from individual sources on secondary air pollutants.
- There are a number of approaches that can be applied.

#### Emissions

- □ Large uncertainty. Updated emission factor estimates for ships, aircraft and vehicles are available.
- Activity based and fuel based emission factors can be applied.

#### Approach

# Dispersion Air Quality No Chemical Interaction By Grid Averaging Chemical Interaction Explicitly Included Explicitly Included

- Better accounting of mean and turbulent air motions during pollutant transport.
- Chemical reactions between pollutants in different air parcels included without losing source identity.
- Hybrid model allows the determination of the contribution of each source to <u>secondary</u> pollutant formation at all receptors.



#### **Tasks**

- Task 1: Emission Inventory Development
- Task 2: Model Development
- Task 3: Model Validation
- Task 4: Reporting



- CARB 2000 annual emissions inventory
- Southern California Ozone Study 1997 (SCOS97)
  - □ 5 x 5 km gridded hourly emissions
  - Speciated organics
  - Includes commercial, civil, and military aviation sources and marine sources
- 2001 Barrio Logan Study
  - Microscale scale emissions inventory
  - Additional information on the spatial and temporal distribution of emissions

San Diego:
Daily NOx Emissions





#### MM5

- Domains:
  - □ coarser domain grid cell size is 15 km, 75x75 cells.
  - □ inner grid cell size 5 km, 55x61 cells
- 35 layers.



#### MM5 (cont.)



- •Receiving real-time MM5 output of simulated surface wind vectors and color filled wind speed vectors from NPS to drive the LPM.
- •Can also apply multiple nested grids 12, 4, 1.333, and 0.433 km to evaluate synoptic, regional scale, mesoscale, and microscale effects.

#### Lagrangian Particle Model



Example of a simulated tracer plume in San Diego Harbor (1-hr time intervals, noon to 4 PM).

- Incorporates wind field forecasts from MM5.
- Developed a converter that allows for a grid as fine as 0.4 km.
- Model incorporates moving and tilted emissions.

#### **Eulerian Chemical Model: SBOX**



The Regional Atmospheric Chemistry Mechanism, RACM, [Stockwell et al., 1997] was used.

#### .

#### **SBOX Details**

- The Regional Atmospheric Chemistry Mechanism, RACM, (Stockwell et al., 1997) was used.
  - □ RACM is a highly revised version of the RADM2 mechanism (Stockwell et al., 1990)
  - □ Includes reactions for 17 stable inorganic species and 4 inorganic intermediates. Organic species are aggregated according to their chemical structure and reactivity into 32 stable organic species and 24 organic intermediates. There are a total of 237 reactions in the RACM mechanism.
- Photolysis rate coefficients for the 23 photochemical reactions in the RACM mechanism were calculated according to Madronich (1987) with an actinic flux computed by a radiative transfer model that is based on the delta-Eddington technique (Joseph and Wiscombe, 1976).







 $Particle_k(x,y,z,T,RH,p,chm_i....chm_j,ID,t)$ 

#### Additional Model Development





Worked collaboratively with NOAA:

- •Evaluated of HYSPLT-Chem model performance.
- •Compared predictions from the DRI and NOAA models.

### Additional Model Development (cont.)

#### LPM Testing:

- Obtained CARB tracer data from the 2001 Barrio Logan Study.
- Evaluated LPM predictions



#### **Model Validation**



- 10 Research flights performed in July 2003 during mid-day (1200-1700), sampling a grid of ~100x80 km
- Measurements included:
  - □ Trace gases (CO, SO<sub>2</sub>, NO, NO<sub>2</sub>, NO<sub>y</sub>, O<sub>3</sub> and NO<sub>3</sub>-)
  - $\square$  Aerosol (3 $\lambda$  nephelometer)
  - Meteorological parameters (WS, WDD, T, RH and P)
  - □ Location (GPS)
  - Grab samples for HC and carbonyl analysis

## On-Board TVA's Research Aircraft



### Airborne Data System





| Segment |                                                                  |
|---------|------------------------------------------------------------------|
| 1       | Altitude profile over the airport up to 6000'                    |
| 2       | Level flight at 6000' to a way point east of the SD harbor       |
| 3       | Altitude profile over the mid-way point down to 1000'            |
| 4       | Constant elevation sampling at ~1000' over the surface for 4-5 h |
| 5       | Once an hour zero calibration for approx. 5 min                  |
| 6       | Ascend to 6000' and fly toward the airport                       |
| 7       | Altitude profile over the airport from 6000' to the surface      |
| 8       | Multipoint calibration of All gas analyzers                      |





### SO<sub>2</sub> and CO



### O<sub>3</sub> and Nitrate



### Conversion of NO to NO<sub>z</sub>



### O<sub>3</sub> and Temperature Profiles



# Ozone Transport from the North and Local Ozone 13 July 2003



#### Local and Transported SO<sub>2</sub>



# Model Results: Map of study (flight) area



### Model Results vs. Airborne Measurements: July 7, 2003



### Model Results vs. Airborne Measurements: July 9, 2003



### Model Results vs. Airborne Measurements: July 17, 2003



### Ozone concentration (ppb), July 19 2003 1500 LST



A: All sources, B: Without DoD emissions, C: Difference

### Example of impact of emissions form a single ship in San Diego harbor at July 7 2003 1500 LST



#### м

#### Summary

- Developed and validated a hybrid model to assess the impact of coastal emissions on air quality.
- Incorporates the strengths of both the Lagrangian transport/diffusion model and Eulerian multi box chemical model.
- Capable of evaluating impact of emissions from individual sources (i.e. source/receptor relationship).
- Modeling system is modular and can incorporate different transport/diffusion and transformation schemes.
- System can evaluate moving sources such as ship and aircraft emissions.
- Employed comprehensive platform for measuring emissions from individual sources and pollutant transport and transformation.
- Unique database for future model evaluation studies.

#### Acknowledgements

- Financial Support from SERDP (CP-1253)
- DRI
  - Darko Koracin
  - Julide Koracin
  - Menachem Luria
  - John Sagebiel
    - Irene Shumyatsky
    - Bill Stockwell
      - **Erez Weinroth**

- TVA
  - Roger Tanner
  - Ray Valente
- NOAA
  - □ John Lewis
  - □ Roland Draxler
  - □ Ariel Stein
- NPS
  - Douglas Miller
- CARB

Vlad Isacov

Paul Allen